Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using half-normal probability plot and regression analysis to differentiate complex traits: differentiating disease response of multigenic resistance and susceptibility in tomatoes to multiple pathogen isolates.

Identifieur interne : 002109 ( Main/Exploration ); précédent : 002108; suivant : 002110

Using half-normal probability plot and regression analysis to differentiate complex traits: differentiating disease response of multigenic resistance and susceptibility in tomatoes to multiple pathogen isolates.

Auteurs : Min-Jea Kim [États-Unis] ; Walter Federer ; Martha A. Mutschler

Source :

RBID : pubmed:16237517

Descripteurs français

English descriptors

Abstract

The need for a new analytical approach was encountered in the course of characterizing newly developed tomato lines resistant to late blight. Late blight resistant tomato lines were created in independent breeding programs using the accession Solanum pimpinellifolium L. (formerly Lycopersicon pimpinellifolium (L.) Miller) L3708 as the source of the resistance. However, initial field observation suggested that the late blight resistance in the lines produced by two independent breeding programs differed. Possible causes included a partial transfer of the late blight resistance derived from S. pimpinellifolium L3708 or the possibility of race specificity of this resistance. A crucial issue was determining the most appropriate and robust analytical method to use with data from laboratory analyses of the responses of nine tomato lines against five P. infestans isolates. Prior analysis by standard ANOVA revealed significant differences across tomato lines but could not determine whether the disease responses in the CLN-R lines were different from those of the heterozygous F(1) hybrids, created by crossing susceptible tomatoes with the fixed CU-R lines. A different analytical method was needed. Therefore, sporangia numbers/leaflet and diseased area data were analyzed using a half-normal probability plot and regression analysis. The results of this analysis show its utility for genetic or pathology studies. Considering only populations of the uniform tomato lines, this method confirms the results obtained by using a standard ANOVA, but provides a clearer demonstration of the distributions of the individuals within the populations and how this distribution impacts variance and the difference among the populations. This method also allows a joint analysis of the uniform lines with an additional population that is less uniform, because it is segregating. Such an analysis would be invalid using a standard ANOVA. The results of this joint analysis determined that the additional population was divergent from the fixed CU-R lines, and, against some isolates, against the CLN-R lines as well. Half-normal probability plot analysis method would be applicable more broadly beyond analysis of disease resistance data. It could be useful for data from populations that are not normally distributed, for traits which are affected by epistatic gene action, and could be useful for selection of extremes.

DOI: 10.1007/s00122-005-0084-2
PubMed: 16237517


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using half-normal probability plot and regression analysis to differentiate complex traits: differentiating disease response of multigenic resistance and susceptibility in tomatoes to multiple pathogen isolates.</title>
<author>
<name sortKey="Kim, Min Jea" sort="Kim, Min Jea" uniqKey="Kim M" first="Min-Jea" last="Kim">Min-Jea Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Breeding and Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Breeding and Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Federer, Walter" sort="Federer, Walter" uniqKey="Federer W" first="Walter" last="Federer">Walter Federer</name>
</author>
<author>
<name sortKey="Mutschler, Martha A" sort="Mutschler, Martha A" uniqKey="Mutschler M" first="Martha A" last="Mutschler">Martha A. Mutschler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16237517</idno>
<idno type="pmid">16237517</idno>
<idno type="doi">10.1007/s00122-005-0084-2</idno>
<idno type="wicri:Area/Main/Corpus">002219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002219</idno>
<idno type="wicri:Area/Main/Curation">002219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002219</idno>
<idno type="wicri:Area/Main/Exploration">002219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using half-normal probability plot and regression analysis to differentiate complex traits: differentiating disease response of multigenic resistance and susceptibility in tomatoes to multiple pathogen isolates.</title>
<author>
<name sortKey="Kim, Min Jea" sort="Kim, Min Jea" uniqKey="Kim M" first="Min-Jea" last="Kim">Min-Jea Kim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Breeding and Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Breeding and Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Federer, Walter" sort="Federer, Walter" uniqKey="Federer W" first="Walter" last="Federer">Walter Federer</name>
</author>
<author>
<name sortKey="Mutschler, Martha A" sort="Mutschler, Martha A" uniqKey="Mutschler M" first="Martha A" last="Mutschler">Martha A. Mutschler</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="ISSN">0040-5752</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genotype (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Diseases (MeSH)</term>
<term>Probability (MeSH)</term>
<term>Regression Analysis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de régression (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Immunité innée (MeSH)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Lycopersicon esculentum (microbiologie)</term>
<term>Maladies des plantes (MeSH)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Probabilité (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genotype</term>
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Probability</term>
<term>Regression Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de régression</term>
<term>Génotype</term>
<term>Immunité innée</term>
<term>Maladies des plantes</term>
<term>Probabilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The need for a new analytical approach was encountered in the course of characterizing newly developed tomato lines resistant to late blight. Late blight resistant tomato lines were created in independent breeding programs using the accession Solanum pimpinellifolium L. (formerly Lycopersicon pimpinellifolium (L.) Miller) L3708 as the source of the resistance. However, initial field observation suggested that the late blight resistance in the lines produced by two independent breeding programs differed. Possible causes included a partial transfer of the late blight resistance derived from S. pimpinellifolium L3708 or the possibility of race specificity of this resistance. A crucial issue was determining the most appropriate and robust analytical method to use with data from laboratory analyses of the responses of nine tomato lines against five P. infestans isolates. Prior analysis by standard ANOVA revealed significant differences across tomato lines but could not determine whether the disease responses in the CLN-R lines were different from those of the heterozygous F(1) hybrids, created by crossing susceptible tomatoes with the fixed CU-R lines. A different analytical method was needed. Therefore, sporangia numbers/leaflet and diseased area data were analyzed using a half-normal probability plot and regression analysis. The results of this analysis show its utility for genetic or pathology studies. Considering only populations of the uniform tomato lines, this method confirms the results obtained by using a standard ANOVA, but provides a clearer demonstration of the distributions of the individuals within the populations and how this distribution impacts variance and the difference among the populations. This method also allows a joint analysis of the uniform lines with an additional population that is less uniform, because it is segregating. Such an analysis would be invalid using a standard ANOVA. The results of this joint analysis determined that the additional population was divergent from the fixed CU-R lines, and, against some isolates, against the CLN-R lines as well. Half-normal probability plot analysis method would be applicable more broadly beyond analysis of disease resistance data. It could be useful for data from populations that are not normally distributed, for traits which are affected by epistatic gene action, and could be useful for selection of extremes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16237517</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0040-5752</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>112</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Using half-normal probability plot and regression analysis to differentiate complex traits: differentiating disease response of multigenic resistance and susceptibility in tomatoes to multiple pathogen isolates.</ArticleTitle>
<Pagination>
<MedlinePgn>21-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The need for a new analytical approach was encountered in the course of characterizing newly developed tomato lines resistant to late blight. Late blight resistant tomato lines were created in independent breeding programs using the accession Solanum pimpinellifolium L. (formerly Lycopersicon pimpinellifolium (L.) Miller) L3708 as the source of the resistance. However, initial field observation suggested that the late blight resistance in the lines produced by two independent breeding programs differed. Possible causes included a partial transfer of the late blight resistance derived from S. pimpinellifolium L3708 or the possibility of race specificity of this resistance. A crucial issue was determining the most appropriate and robust analytical method to use with data from laboratory analyses of the responses of nine tomato lines against five P. infestans isolates. Prior analysis by standard ANOVA revealed significant differences across tomato lines but could not determine whether the disease responses in the CLN-R lines were different from those of the heterozygous F(1) hybrids, created by crossing susceptible tomatoes with the fixed CU-R lines. A different analytical method was needed. Therefore, sporangia numbers/leaflet and diseased area data were analyzed using a half-normal probability plot and regression analysis. The results of this analysis show its utility for genetic or pathology studies. Considering only populations of the uniform tomato lines, this method confirms the results obtained by using a standard ANOVA, but provides a clearer demonstration of the distributions of the individuals within the populations and how this distribution impacts variance and the difference among the populations. This method also allows a joint analysis of the uniform lines with an additional population that is less uniform, because it is segregating. Such an analysis would be invalid using a standard ANOVA. The results of this joint analysis determined that the additional population was divergent from the fixed CU-R lines, and, against some isolates, against the CLN-R lines as well. Half-normal probability plot analysis method would be applicable more broadly beyond analysis of disease resistance data. It could be useful for data from populations that are not normally distributed, for traits which are affected by epistatic gene action, and could be useful for selection of extremes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Min-Jea</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding and Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Federer</LastName>
<ForeName>Walter</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mutschler</LastName>
<ForeName>Martha A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>10</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="Y">Plant Diseases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011336" MajorTopicYN="N">Probability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16237517</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-005-0084-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2001 Oct;159(2):757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 26;296(5568):744-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Jul;6(7):983-994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2002 Apr;20(1):33-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14538061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Federer, Walter" sort="Federer, Walter" uniqKey="Federer W" first="Walter" last="Federer">Walter Federer</name>
<name sortKey="Mutschler, Martha A" sort="Mutschler, Martha A" uniqKey="Mutschler M" first="Martha A" last="Mutschler">Martha A. Mutschler</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Kim, Min Jea" sort="Kim, Min Jea" uniqKey="Kim M" first="Min-Jea" last="Kim">Min-Jea Kim</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002109 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002109 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16237517
   |texte=   Using half-normal probability plot and regression analysis to differentiate complex traits: differentiating disease response of multigenic resistance and susceptibility in tomatoes to multiple pathogen isolates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16237517" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024